Shape-correlated Statistical Modeling and Analysis for Respiratory Motion Estimation

نویسندگان

  • Xiaoxiao Liu
  • Stephen M. Pizer
چکیده

Xiaoxiao Liu: Shape-correlated Statistical Modeling and Analysis for Respiratory Motion Estimation. (Under the direction of Stephen M. Pizer.) Respiratory motion challenges image-guided radiation therapy (IGRT) with location uncertainties of important anatomical structures in the thorax. Effective and accurate respiration estimation is crucial to account for the motion effects on the radiation dose to tumors and organs at risk. Moreover, serious image artifacts present in treatment-guidance images such as 4D cone-beam CT cause difficulties in identifying spatial variations. Commonly used nonlinear dense image matching methods easily fail in regions where artifacts interfere. Learning-based linear motion modeling techniques have the advantage of incorporating prior knowledge for robust motion estimation. In this research shape-correlation deformation statistics (SCDS) capture strong correlations between the shape of the lung and the dense deformation field under breathing. Dimension reduction and linear regression techniques are used to extract the correlation statistics. Based on the assumption that the deformation correlations are consistent between planning and treatment time, patient-specific SCDS trained from a 4D planning image sequence is used to predict the respiratory motion in the patient’s artifact-laden 4D treatment image sequence. Furthermore, a prediction-driven atlas formation method is developed to weaken the consistency assumption, by integrating intensity information from the target images and the SCDS predictions into a common optimization framework. The strategy of balancing between the prediction constraints and the intensity-matching forces makes the method less sensitive to variation in the correlation and utilizes intensity information besides the lung boundaries. This strategy thus provides improved motion estimation accuracy and robustness. The SCDS-based methods are shown to be effective in modeling and estimating respiratory motion in lung, with evaluations and comparisons carried out on both simulated images and patient images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-correlated Deformation Statistics for Respiratory Motion Prediction in 4D Lung.

4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape defo...

متن کامل

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

Patch-Based Low-Rank Matrix Completion for Learning of Shape and Motion Models from Few Training Samples

Statistical models have opened up new possibilities for the automated analysis of images. However, the limited availability of representative training data, e.g. segmented images, leads to a bottleneck for the application of statistical models in practice. In this paper, we propose a novel patch-based technique that enables to learn representative statistical models of shape, appearance, or mot...

متن کامل

Population-based Correspondence Models for Respiratory Motion Estimation in the Presence of Inter-fraction Motion Variations

Many respiratory motion compensation approaches in radiation therapy of thoracic and abdominal tumors are guided by external breathing signals. Patient-specific correspondence models based on planning 4D data are used to relate signal measurements to internal motion. The motion estimation accuracy of these models during a treatment fraction depends on the degree of inter-fraction motion variati...

متن کامل

Vocal Tract Airway Tissue Boundary Tracking for rtMRI Using Shape and Appearance Priors

Knowledge about the dynamic shape of the vocal tract is the basis of many speech production applications such as, articulatory analysis, modeling and synthesis. Vocal tract airway tissue boundary segmentation in the mid-sagittal plane is necessary as an initial step for extraction of the cross-sectional area function. This segmentation problem is however challenging due to poor resolution of re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011